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Abstract

A theory of nonlocal elasticity of bi-Helmholtz type is studied. We employ Eringen’s model of nonlocal elasticity,
with bi-Helmholtz type kernels, to study dispersion relations, screw and edge dislocations. The nonlocal kernels are
derived analytically as Green functions of partial differential equations of fourth order. This continuum model of non-
local elasticity involves two material length scales which may be derived from atomistics. The new nonlocal kernels are
nonsingular in one-, two- and three-dimensions. Furthermore, the nonlocal elasticity of bi-Helmholtz type improves the
one of Helmholtz type by predicting a dispersion relationship with zero group velocity at the end of the first Brillouin
zone. New solutions for the stresses and strain energy of screw and edge dislocations are found.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical continuum theories like the linear theory of elasticity are intrinsically size independent. The
classical theory of elasticity predicts no dispersion and is valid only for small wave numbers. In addition,
the elastic strain, the stress and the elastic strain energy of defects (dislocations, disclinations) are singular
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at the defect line. Of course, such singularities are unphysical and they are the price which has to be paid if
one uses classical elasticity within the defect core region.

An improvement is obtained by using nonlocal elasticity instead of classical one (Kréner and Datta, 1966;
Eringen, 1983; Eringen, 2002). Theory of nonlocal elasticity includes the effect of long range interatomic
forces so that it can be used as a continuum model of the atomic lattice dynamics. In the theory of nonlocal
elasticity the stress at a reference point r depends on the elastic strain at every point »'. From the mathemat-
ical point of view, this nonlocal interaction is given by a so-called nonlocal kernel. Solutions for the screw
and edge dislocations within nonlocal elasticity with Gaussian kernels have been given by Eringen (1977a,b).
A feature of these solutions is the elimination of the stress field and strain energy singularities at the dislo-
cation line. For a special class of kernels, which are the Green functions of the Helmholtz equation, nonlocal
elasticity was studied by Eringen (1983, 1992, 2002). These kernel are singular in two- and three-dimensions.
This nonlocal elasticity of Helmholtz type was used for the calculation of the stress field and strain energy of
a screw dislocation. Fortunately, the singularities of the stress disappeared. This stress field of a screw dis-
location coincides with the stress field calculated by Gutkin and Aifantis (1999a) within the gradient elastic-
ity framework. Furthermore, the strain energy is finite at the dislocation core. The stress field of an edge
dislocation was calculated by Lazar (2003) in the framework of nonlocal elasticity of Helmholtz type. His
result is in agreement with the stress obtained by Gutkin and Aifantis (1999a) within gradient elasticity.
On the other hand, the predicted dispersion curve is more realistic in nonlocal elasticity than that obtained
within the classical elasticity. However, the group velocity is badly off at the end of the Brillouin zone. These
solutions for the stress fields converge to the linear elasticity solutions in the far field.

Thus, the question arises, how can we improve the nonlocal elasticity of Helmholtz type? The kernels
should be the Green functions of partial differential equations of higher order which are modifications
of the Helmholtz equation. The physical motivation of this paper is twofold. First, the nonlocal kernels
should be nonsingular and, thus, they should have a finite maximum value. Second, the kernels of bi-
Helmholtz type should lead to dispersion relations for plane harmonic waves, which are coincident to those
obtained in lattice dynamics. Thus, the group velocity must be zero at the boundary of the Brillouin zone. The
physical reason is that the limit-velocity with k = n/a belongs to a standing wave (no wave propagation)-a
well-known result in lattice dynamics. Recently, Picu (2002) discussed the implications of modified Gaussian
kernels which depends on two intrinsic length scales to improves the behaviour of the group velocity.

In this paper, we address the theory of nonlocal elasticity of bi-Helmholtz type. In Section 2, the frame-
work of isotropic nonlocal elasticity is discussed. We specialize to nonlocal elasticity of bi-Helmholtz type
in Section 3. In Section 4, we give the nonlocal kernels of such a theory in one-, two- and three-dimensions.
In Section 5, we give the dispersion relations and compare them with results obtained in lattice theories.
The stresses and strain energies of screw and edge dislocations are calculated in Sections 6 and 7. Finally,
we conclude with a summary in Section 8. Some mathematical details are given in Appendix A.

2. Governing equations

The fundamental field equations of nonlocal elasticity have for an isotropic medium the following form
(Eringen, 1983, 1987, 2002):

Oty + p(fi — ;) =0, (2.1)
t;(r) = /VOC(|" =)oy (X)do(r'), 1 =1; (22)
0ij = Abjen + 2uey;, (2.3)
ey = % (O + Do), (2.4)
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where A and u are the Lamé constants. p, f; and u; are, respectively, the mass density, body force density and
the displacement vector. In addition, e;; is the classical elastic strain tensor, ¢;; and t;; are the classical and
nonlocal stress tensors, respectively. The o(|r — #’|) is the nonlocal kernel. Boundary conditions involving
tractions are based on the stress tensor #;,

tiin; = tiw, (2.5)

where t;,,) are the boundary tractions. Eq. (2.2) may be rewritten in a nonlocal stress-strain relation accord-
ing to

ta(r)::JC{JfGVA*VW)5u5k1+*2M’GV‘*rW)5m5ﬂ}em(V)dv(V) (2.6)

with
W(r=v]) = 2a(lr =), W(lr—r]) = pa(lr—r), (2.7)
which are the Lamé coefficients of the nonlocal medium. Thus, the nonlocal kernel is a measure of the effect

of the strain at r’ on the stress at r.
The nonlocal kernel a(|r — r'|) has the following properties:

(i) From Eq. (2.2) it is clear that the nonlocal kernel has the dimension of (length) . Therefore, it must
depend on characteristic length scales.
(i1) It must reach a maximum at r =’ and has to decay to zero at large distances.
(iii) It has to satisfy the normalization condition:

/Voc(|r —¥])dov(¥) =1, (2.8)

which is the normalization condition of the nonlocal kernel.

(iv) It must be a continuous function of position (in the classical limit it becomes the Dirac delta func-
tion).These rather general conditions can be fulfilled by many functions. An additional property of
the nonlocal kernel may be:

(v) It is a Green function of a linear differential operator L:

Lo(lr —¥]) =6 —17). (2.9)
L may be a differential operator with constant or variable coefficients of any order. Applying the differential
operator L to Eq. (2.2), we obtain the differential equation for ¢;:
where the inhomogeneous part is given by the stress tensor o, If L is a differential operator with constant
coeflicients, then (2.1) gives

9,01 + L(pfi — pit;) = 0. (2.11)

3. Nonlocal elasticity of bi-Helmholtz type

As elliptic differential operator we use an operator of fourth order which has already been proposed by
Eringen (1992, 2002). This linear differential operator of fourth order of bi-Helmholtz type with constant
coefficients is given by

L=1-&4+y'44, (3.1)
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where ¢ and y are nonnegative parameters of nonlocality. These two parameters have the dimension of
lengths and, thus, they may be written in terms of a characteristic length scale, a, (i.e., lattice constant)

e=¢a, & =0, y=ypa, 7, =0 (3.2)

Nonlocal elasticity of bi-Helmholtz type has two limits. They are given in two steps. The limit from
bi-Helmholtz type to Helmholtz type is given by y — 0. The second limit is obtained by ¢ — 0, in addition
to the first one. The second limit is the limit from nonlocal elasticity of Helmholtz type to classical theory of
elasticity.

Using (3.1), Eq. (2.9) reads

(1 = A+ y* AMa(lr —¥|) = 6(r —¥) (3.3)
and (2.10) gives

In addition, Eq. (2.11) is given by
By + (1= 4+ 44)(pf — piis) = 0. (3.3)

Using Eqgs. (2.3) and (2.4), we obtain from (3.5) the following partial differential equation for the
displacement vector:

pdu; + (2 + w)didu; + (1 — 24 +9*A4)(pfi — pi) = 0. (3.6)

Because Eq. (3.6) involves mixed space-time derivatives up to fourth order space derivatives, it is an
improved linear version of the ‘good” Boussinesq equation (see, e.g., Maugin, 1999).

The differential operator is called bi-Helmholtz operator because it can be factorized into two Helmholtz
operators according to

L=1-4+y"44=(1-34)(1-c34) (3.7)
with the abbreviations
2 4
2 _ ¢ Y
% _2<1+ 1—484), (3.8)
2 4
2_ ¢ 4
CZ_E<1— 1—48—4>, (3.9)
and the conditions
& =ci+c, (3.10)
7t =l (3.11)

We note that such a factorization was not used by Eringen (2002). Due to (3.11), the condition of the
discriminant in Egs. (3.8) and (3.9) must be nonnegative. Thus,

7
0< <1_4s4>' (3.12)
Then, we have the two possibilities:

o >4yt ¢ £, are real, = &> V2.
ot =4 ¢, =, are real, = ¢ = V2.
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Since ¢3 is positive we have
0 <4yt <& (3.13)

Thus, ¢? and ¢3 have to be real and positive. The limit from nonlocal elast1c1ty of b1 Helmholtz type to
nonlocal elasticity of Helmholtz type is obtained from Egs. (3.8) and (3.9) by ¢ — ¢* and ¢ — 0.

4. Nonlocal kernels of bi-Helmholtz type

We give the solutions of Eq. (3.3) for infinitely extended solids. We note that Eringen (2002) gave only
the expression (A.4) for the kernel of Eq. (3.3) in the k-space. The explicit calculations are given in Appen-
dix A.1. The nonlocal kernels which are the Green function of the bi-Helmholtz equation are given by (see
Egs. (A.12)«(A.14)):

(a) One-dimension (|r| = v/x2):

1 1 1
a(l) = 5 =z e exp(oll/er) —erexp(—ll/en)}. #(0) =3 ——. @.1)
(b) Two-dimensions (|r] = /x2 + ?):
1 1 1 1 cl
) = 57 g tKolllfe) = Ko(llfea)}, o(0) = 52 o= nc, 42)
where K,, is the modified Bessel function of the second kind (or McDonald function) of order n.
(c) Three-dimensions (|r| = /X2 +)y* 4+ 22):
1 1 1
— — — 0)=——— 4.3
(1) = g gz Pl /) = exp(hl/ex)}. - a0) = - (43)
and for the limit ¢, — ¢; =y we obtain
(a) One-dimension:
1 1
a(|rl) = 2 5 55 (4 [r) exp(=|r|/7),  2(0) s (4.4)
(b) Two-dimensions:
L r| 1
) = 3y s Kolfa), a(0) =4 (45)
(c) Three-dimensions:
1 1
— =—. 4.
allr) = 3z 55 expl-lrl/2), (0) =g (46)

The kernels (4.1)—(4.6) fulfill all conditions (i)—(v). It is important to note that all kernels (4.1)—(4.6) are
nonsingular in contrast to the two- and three-dimensional nonlocal kernels of Helmholtz type which are
singular at » = 0. In the limits ¢, — 0 and ¢; — ¢, the nonlocal kernels (4.1)—(4.3) reduce to the nonlocal
kernels of Helmholtz type given by Eringen (1983, 1987). The kernels (4.4)—(4.6) are plotted in Fig. 1.
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Fig. 1. Nonlocal kernels of bi-Helmholtz type with ¢; = ¢, =y are plotted vs r/y: (a) «[4y], (b) o:[4ny?], () a[87y°].

5. Matching the dispersion curve with lattice models

We consider an elastic body of infinite extent with no discontinuity or body forces. Using the Helmholtz
decomposition of the displacement field #; into the Lamé potentials (scalar potential ¢, vector potential ;)
according to

u; = 8jd) + Sjkzakl//[ with 8jlﬁj =0. (51)
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Eq. (3.6) with f= 0 reduces to

viAdp — (1 — &4 +y*44)p = 0, (5.2)

Ay — (1 = &4+ y*44)) = 0, (5.3)
where

U%:/L—i—pZ,u, 03:%. (5.4)

Here v, and v, denote the longitudinal and the transversal velocities of sound, respectively. For plane
harmonic waves, Egs. (5.2) and (5.3) lead to the following dispersion relations for the plane longitudinal
and transverse waves

1

2 2 2oy —

wj (k) /wy; = a(k) = [T 28 j=12 (5.5)
with

w0y = K'vj. (5.6)

The phase velocity is given by
and the group velocity reads
do; 1— %
WO(k) = S = ! (58)

= =v .
de Y Tv e + %
The natural conditions for dispersion relations are

doj (5.9)

FO="g| =u Swa="g] =

The first condition means that the group velocity is v; at the beginning of the Brillouin zone and the sec-
ond condition of Eq. (5.9) means that the group velocity vanishes at the end of the Brillouin zone. From the
second condition of (5.9), we obtain the value for y, (see also Eringen, 2002):

1
70 = — =~ 0.318. (5.10)
s
The dispersion relation (5.5) may be compared with those known from lattice dynamics to obtain the
value of the coefficient &.
5.1. Nearest neighbour interactions
In the Born—-von Karman model of lattice dynamics, which is analogous to the case of a chain with only
nearest-neighbour interactions, the dispersion relation reads (see, e.g., Brillouin, 1953)
w?(k)/wq; = (2a/k)’sin* (ka/2). (5.11)
The matching for (5.11) and (5.5) with (5.10) is perfect at the end of the Brillouin zone (ka = =) if (see Fig. 2)

m* — 8
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0 02 0.4 0.6 0.8 1
ka/m

Fig. 2. Dispersion curves for nonlocal elasticity of bi-Helmholtz type with yo = 1/n and & = 0.218 (full line) and the Born-von
Kdrmdn model (dashed curve) of lattice dynamics vs reduced wave number ka/m.

The dispersion relation (5.5) with the values (5.10) and (5.12) coincides with Kunin’s result for a Debye
quasicontinuum (Kunin, 1983; Eringen, 2002). Unfortunately, it violates the condition (3.12). In fact:

(1 —4V—°) <0. (5.13)
&

Thus, ¢ and ¢, are complex,
¢ >~ (0.250 4 0.1971)a, (5.14)
¢y ~ (0.250 — 0.197i)a (5.15)

with i = v/ —1. But, this is not acceptable from the physical point of view.
If we use the case ¢ = 29%, the dispersion relation reads

1

wj/w%)j:m. (5.16)
From the matching at ka = , we obtain for yy:
Yo = % ~ (.240, (5.17)
or for ¢; and ¢5:
c1 = ¢y >~ 0.240a. (5.18)

But the price one has to pay is that the group velocity is off at the end of the Brillouin zone. In fact, the
group velocity is close to zero at the Brillouin zone boundary. However, it is a better approximation than
the dispersion curve of nonlocal elasticity of Helmholtz type (see Fig. 3)

1
27,2 — “h e —
w; [0y, = TR with g = 0.39, (5.19)
where the group velocity is badly off at the end of the Brillouin zone.

Therefore, the best physical result for the match of the Born—von Kdrman model is given by nonlocal
elasticity of Helmholtz type or bi-Helmholtz type with one parameter of nonlocality. However, in both
cases the group velocity is badly off at the end of the Brillouin zone.
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0 0.2 0.4 0.6 0.8 1
ka/m

Fig. 3. Dispersion curves for nonlocal elasticity of bi-Helmholtz type with y, = 0.24 (full line), the nonlocal model of Helmholtz type
with ¢y = 0.39 (long dashed curve) and the Born-von Kdrmédn model (dashed curve) vs reduced wave number ka/x.

5.2. Next nearest neighbour interactions

Now, we consider a model of lattice dynamics with next-nearest neighbour interactions. Thus, we ac-
count for the interactions with first and second neighbours like in a homogeneous chain. The dispersion
relation of such a model is given by Jaunzemis (1967).

@ (k) [}, = (2a/k)*(1 + 8)sin’ (ka/2) (5.20)
with
B
=" (5.21)

where o and f§ are the force constants (stiffness) of first and second neighbour interactions. Thus, ¢ is the
ratio of force constants for second and first neighbour interactions.

The matching for (5.20) and (5.5) with (5.10) is perfect at the end of the Brillouin zone (ka = =) if (see
Fig. 4)

0 0.2 0.4 0.6 0.8 1
ka/m

Fig. 4. Dispersion curves for nonlocal elasticity of bi-Helmholtz type with 7y, = 1/r and the lattice model with next-nearest neighbour
interactions vs reduced wave number ka/n for the value of 6 = —0.383.
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72 —8(1 + )
A (1 +0)

&y =

(5.22)

Thus, & is given in terms of the ratio J. If we use (5.22) and solve the inequation (3.12), we obtain the
bounds for §:

2

—1<d< %— 1 ~ —0.383 (5.23)

and for the force constants
—a < f < —0.3830. (5.24)

Thus, this corresponds to a competition between the interaction of second and first neighbours. The first
force constant is stronger than the second one; otherwise, it would be an unphysical result. The sign and the
bounds of ¢ are similar to those given by Maugin (1999, p. 73).

If we give up the second condition of (5.9) and match the dispersion relation (5.16) with (5.20) at ka = =,
we obtain

1 1
2
=——= —_— 2

O Ve ) (5.25)

Doing the same for (5.19) and (5.20), one gets
2

, m—4(1+9)

0T 41+ o) (5.26)
From the conditions y > 0 and ¢} > 0 we obtain in both cases the following bounds for ¢:

2
—1<5<%—1:1.467 (5.27)
and for the force constants
—o < < 1.467a. (5.28)

Thus, > o is possible, what is a strange and unphysical result.

We conclude that the best match for the lattice model with next-nearest neighbour interactions is ob-
tained by the nonlocal elasticity of bi-Helmholtz type with two different coefficients of nonlocality. It pre-
dicts the physical result of a vanishing group velocity at the boundary of the Brillouin zone. No anomalous
dispersion appears. Nonlocal elasticity of Helmholtz type or bi-Helmholtz type with only one parameter of
nonlocality leads to unphysical results.

6. Screw dislocation

Consider now a static screw dislocation in the nonlocal theory of bi-Helmholtz type. For f; = 0 the static
equation of equilibrium (2.1) is satisfied by introducing the stress function F according to

t.p = O, F. (6.1)
For stress 0., of a straight screw dislocation we have

_4b:1_
T 2n

217’; 0, Inr. (6.2)

Oz
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Using (3.4), this gives an inhomogeneous bi-Helmholtz equation for the stress function:

(1 =4 +y*"AA)F = ’;bz Inr. (6.3)
Y

An appropriate solution of this equation is given by (see Appendix A.2, Eq. (A.19)):

ub, 1
F = o {lnr —l—m [C%Ko(r/cl) — c%KO(r/cz)]}. (6.4)
Hence, the stress field 7., is given by
ub, 1 1
by =5 ;{1 — g glarki(r/e) - Cerl(r/Cz)]}- (6.5)

In the limits ¢, — 0 and ¢; — ¢, we recover Eringen’s result calculated in nonlocal elasticity of Helmholtz
type (Eringen, 1983; Eringen, 2002). For ¢, = ¢; = y it reads

_ i 1{1 ~Lkir/) - ;/ZKOW}. (6.6)

o = 21 r
The stress is zero at »r =0 and has an extremum value near the dislocation line. The extremum value
depends strongly on ¢ and ¢;. For ¢y =c, =7y, we have: t.,~0.249ub./[2ny] = 0.352ub./[2ne] at
r~2.324y = 1.643¢. Eq. (6.6) is plotted over r/e in Fig. 5. The stress in nonlocal elasticity of Helmholtz type
has a maximum: 7., ~ 0.399 ub./[27¢] at r =~ 1.114¢. Only in the region r/e <3 is a difference between the
stress calculated in nonlocal elasticity of Helmholtz or bi-Helmholtz type (see Fig. 5).

The stored strain energy is given by

Z:%/tije,-jdv, (67)
14

where V' is the volume of the solid body. Integrating over the region ro < r < R, 0< ¢ <27, 0 < z < /and
using e, = b./[4nr], one obtains the strain energy of a screw dislocation per length / as follows:

R

%, R b’ 1
7= Zn/ tpeordr = '[i 2 (lnr+ oo [Ko(r/c)) — c%Ko(r/cz)]}

0 T S 2

(6.8)

ro

0.5 \
04
L 03
0.2

01}

r/e

Fig. 5. Stress r.,, of a screw dislocation is given in units of ub./[2n¢]. The full curve, small dashed curve and dashed curve, respectively,
represent the stress fields in nonlocal elasticity of bi-Helmholtz type, nonlocal elasticity of Helmholtz type and classical elasticity.
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and thus
% ljlb {1 £+ {CI[KO(R/CI) Ko(ro/c1)] — c3[Ko(R/e2) — Ko(ro/c2)]} |- (6.9)

With the limiting expression
Ko(r/e)l,—y — — {VE + lnz—rc}, (6.10)

where yg is the Euler constant, we find for a solid body of radius R:

%:sz |:VE+1I12+ ! 2{C1[K0(R/C]) lnC]]—Cg[Ko(R/Cz)—lnCﬂ} . (611)

Unlike the classical result, X, has no singularity as ro — 0. Using
K,(r/c)|, ... — O, (6.12)
the final result reads

2 ybz

I~ 4n

{/E —|—ln2 H{cf Inc, — 3 lney}|. (6.13)
The strain energy depends on ¢; and ¢,. In the limit ¢, — 0, we recover the result of nonlocal elasticity of
Helmholtz type (see, e.g., Eringen, 2002). The nonlocal result of Helmholtz type coincides with Gutkin
and Aifantis’ gradient elasticity result (Gutkin and Aifantis, 1999b) and, in addition, they agree with
Lazar’s gauge theoretical result (Lazar, 2002a; Lazar, 2002b), which explicitly contains the dislocation core
energy. Thus, we conclude that the nonlocal strain energy is the total strain energy containing the core

energy.

7. Edge dislocation

Now we consider an edge dislocation. In the case of a straight edge dislocation, the static equation of
equilibrium (2.1) is fulfilled by using the stress function f according to

1
Ly ’f +3 azwf lop = ‘frfa lrp = —0, (; a«’f)? I = V(trr + twtp)- (7-1)
The appropriate Airy stress function for a straight edge dislocation in classical elasticity is given by
by )
Y — 1 7.2
/( 47'[(1 —V) 8y(r nr), ( )
where v is the Poisson ratio. The usual stress tensor is calculated by
1 > ub,  sing
I = rarX+ 28‘/"/’ o 2n(l—v) (7.3)
2 pb,  sing
@q T A /1 N ) 7.4
oo = Oyl 2rn(l —v) r (7:4)

B 1\ wbe cosg
Orp = 8r(ra‘pl)_2n(lv) - (7.5)
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If we use (3.4), we obtain an inhomogeneous bi-Helmholtz equation for the stress function:

b
1= 24+ 44)f = ——L22 9 (P Inr). 7.6
(1= 245 aa)f = - 20,0 ) (76)
The solution of this equation reads (see Appendix A.3, Eq. (A.25):
ub, ) 1 2(c2 + ¢ 2
f_—2n(1_v)s1nqo{r(lnr+2> + ( lr 2)—0%_(:% (K1 (r/c1) — 3Ky (r/ca)] ¢ (7.7)

We find for the stress of a straight edge dislocation in cylindrical coordinates

wb sing( MG+ 2 :
tyr:_Zn(l—v) . {1— 3 "‘c%_c%[ClKZ(’”/Cl)_CzKZ(’"/Q)] , (7.8)

ub,  cos¢p 42 +c3) 2, )
= 1— K — K .
=gy e {1 M 2 o) - ke (79)

Kb Sin¢{l+4(C%+C%)722 [chz(r/cl)fchz(r/cz)JrcHKl(r/cl)fcerl(r/cz)]}, (7.10)

t

tW:iZn(l—v) r r? -
ubv  sing 1
tzz:*n(l —-v) { S d-d [CHKl(r/CI)7CZFK1(F/C2)]}' 1

In the limits ¢, — 0 and ¢; — ¢ = 1/k, we recover from Egs. (7.8)—(7.11) the result of nonlocal elasticity
of Helmholtz type obtained by Lazar (2003). In the limit ¢, — ¢, =y, we obtain

ub,  sing 8y? ’

- - K/, 712
trr 27‘[(1—\)) , {1 ]/'2 +4K2(r/')))+yK1(V//)}, ( )
o =g 0L S akte) + L (1.13)
(1 —v) r 2 2T RN )

ub, sin ¢ 82 , 2
lop = D {l tor- 4K, (r/y) — 3§K1(r/y) - y—zKo(r/y) , (7.14)
ubyv  sing r 72

- b=gkilefn) =55k : 715

=gy S e - gk an

The stresses are zero at r =0 and have extremum values near the dislocation line. The extremum values
depend on ¢, and ¢;. For ¢; =¢, =y, we have: |t,,| ~0.159u b, /[2r(1 — v)y] = 0.225ub./[27(1 — v)e] at
r~3.102, y=2.193¢ and ¢ =n/2, 3n/2, |t,,| ~0.159ub./[2n(1 — v)y]=0.225u b./[2n(1 — v)e] at r =~
3.102y =2.193 e and ¢ =0, m, |t,,| = 0.345p b,/[27(1 — v)y] = 0.489ub,/[2n(1 — v)e] at r ~ 2.10y = 1.485¢,
and ¢ = n/2, 3n/2 and |¢..] ~ 0.249ub./[n(1 — v)y] = 0.352u b,/[n(1 — v)e] at r ~ 2.324y = 1.643¢ and ¢ =
n/2, 3n/2. The stresses are plotted over r/¢ in Fig. 6. It can be seen that the stresses calculated in nonlocal
elasticity of bi-Helmholtz type are slightly changed in comparison to the corresponding stresses obtained in
nonlocal elasticity of Helmholtz type which were calculated by Lazar (2003). In fact, in nonlocal elasticity
of Helmholtz type the extremum values are: |7,,.| =~ 0.260ub./[27(1 — v)e] at r ~ 1.494¢ and ¢ = /2, 37/2,
|ty = 0.260u b /[21(1 — v)e] at r ~ 1.494¢ and ¢ =0, 7, |t,,| ~ 0.547pu b./[2n(1 — v)e] at r ~ 0.996¢, and
¢ =m/2, 3n/2 and |t..| ~ 0.399u b, /[n(1 — v)e] at r ~ 1.114¢ and ¢ = n/2, 37/2.
The stored strain energy (6.7) for an edge dislocation is given by

1
zo=3 / (trem + Lopery + 2rpery) dv. (7.16)
v

Using (7.8)—(7.10) and e,,, e, and e,,, obtained from (7.3)—(7.5) with the inverse of the Hooke law (2.3)
and integrating over the region ro < r < R, 0 < ¢ < 2x, 0 < z </, we find the strain energy per length / as
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Fig. 6. Stress of an edge dislocation: (a) ¢, and (b) #,, are given in units of ub, /[2n(1 — v)¢] for ¢ = 3n/2, (c) ¢.. is given in units of
ubw/[r(1 — v)e] for @ =3n/2. The full curves, small dashed curves and dashed curves, respectively, represent the stress fields in

nonlocal elasticity of bi-Helmholtz type, nonlocal elasticity of Helmholtz type and classical elasticity.

% - #lfv)z {(1 —) <lnr + ﬁ [ciKo(r/c1) — C§K0(7/02)]>

ad+a 1
2 —aq)

R

CKa(r/er) - cész/cz)]}

ro

(7.17)
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and thus
Z ub’ R 1
T = m |:(1 — V) <lnr0+ (,’2 — 02 {C%[Ko(R/Cl) — Ko(ro/cl)] — C%[Ko(R/Cz) — Ko(ro/Cz)]})
- 1~ ¢
A+t A+ 1
le P e —a ){01 [K2(R/e1) = Ka(ro/er)] — &3[Ka(R/e2) —Kz(”O/Cz)]}]- (7.18)
0 1
By using the relation (6.10) as well as the limiting expression
Karfe)], g — —5+ 5 (7.19)
2 2
we find the elastic energy for a solid with radius R:
z. b 1
R (19 (3 05+ L (K/en) - Inei] - GlKu(R/ey) - nea)
1 2+¢c 1
—Z + 1R2 z_ 2(0% _ C%) {C%Kz(R/Cl) - C%Kz(R/Cz)}] . (720)

With the asymptotic formula (6.12), we finally obtain

X, b 1 R 1

T = 471:(/'; i V) |:VE - 4(1 — V) + 11’15 — m{é’% lncl — C% lnC'z}:| . (721)
Again, the strain energy depends on ¢; and ¢,. It can be seen that the energy (7.21) is similar to the result for
the energy of a screw dislocation. Only the pre-factor and the second piece of (7.21) are different. In the
limit ¢, — 0 (nonlocal elasticity of Helmholtz type) we recover the result obtained by Gutkin and Aifantis
calculated in the theory of gradient elasticity (Eq. (27) in Gutkin and Aifantis (1999b)) Gutkin and Aifantis
(1999b) used in gradient elasticity the strain energy W =1 [ Va, ar ) 4y where e,] ) is the elastic strain calcu-
lated in gradient elasticity. Gutkin and Aifantis (1999b) also calculated the strain energy of a screw and an
edge dislocation with another expression for the (elastic) strain energy W = —% S Vaffr) ﬁg‘(d) dv where aﬁjgr)
denotes the nonsingular stress in gradient elasticity and BP ) is the classical plastic distortion tensor. Be-
cause the elastic strain energy should be given only in terms of elastic fields, the plastic distortion should
not enter the elastic strain energy. The price they had to pay is that for the edge dislocation they obtained
a different result which does not agree with the elastic strain energy calculated in nonlocal elasticity of
Helmbholtz type.

8. Conclusions

In this paper, nonlocal elasticity of bi-Helmholtz type is studied. New nonlocal kernels in one-, two-, and
three-dimensions are calculated. These kernels contain two parameters of nonlocality. All new nonlocal
kernels are nonsingular. Dispersion relations are obtained for plane waves in nonlocal elasticity of bi-
Helmholtz type. By equating the frequency at the end of the Brillouin zone, one parameter of nonlocality
is determined. The second one is determined by the condition that the group velocity is zero at the bound-
ary of the Brillouin zone. We compared the dispersion curves with results known from lattice dynamics
with nearest neighbour interactions and with next nearest neighbour interactions. The best physical result
for the dispersion relation of nonlocal elasticity of bi-Helmholtz type with two different parameters is
obtained from lattice theory with next nearest neighbour interactions. In addition, the stresses and strain
energy of a straight screw dislocation as well as an edge dislocation are calculated. They do not have
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singularities. The corresponding static theory of gradient elasticity of bi-Helmholtz type with double and
triple stresses will be given in a further publication (Lazar et al., submitted for publication).
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Appendix A
We use the following notation for the Fourier transform (Guelfand and Chilov, 1962)

7 = 7 i) = | " et i, A1)

1) = 7T 0] = e [ ke (A2

A.1. Nonlocal kernels of the bi-Helmholtz equation

First we want to find the nonlocal kernels by using the Fourier transform. From the bi-Helmholtz
equation

(1= 24+ 5* A0)a(jrl) = 5(r), (A3)
the Fourier transformed nonlocal kernel, which is the Green function, is given by
1
a(k) (A.4)

1 + 2k + 4kt

The calculation of # (,11) [(k)] is depending on the zero points of the polynomial in k*:

s &, 1
k +y—4k T (A.5)
The zero points are given by
2 4
2 € Y
k1/2:_2y4<1:F 1—484>. (A.6)

Therefore, a necessary condition for the calculation of the inverse Fourier transform is that the discrim-
inant has to be nonnegative. Therefore,

ﬂ))4
0< (1 - 43_4)’ (A7)

which is equivalent with the condition (3.12). Now we factorize Eq. (A.4) and use the abbreviations (3.8)
and (3.9) according to

a(k) = ! - 21 ( ! L (A.8)

I+ +38) d-G\KP+L F+1
1 2
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Using the formulas (Guelfand and Chilov, 1962; Wladimirow, 1971)

1 c
1 .
70 P =5 exp(—l/c) (A.9)
1]
g —1 _ /
Z ) 1] = ! exp(—v/x> + > +22/c) (A.11)
® _k2 +a] APy + 2

we obtain the inverse Fourier transformed nonlocal kernels

1D :a(|r]) = % c%—lcg{cl exp(—|r|/c1) — caexp(—|¥|/c2)},  |r| = VX2 (A.12)
2D () = 5 s {Kalllfe) = Kolll 2]}, Il = V252 (A1)
11 1

3D :a(|r]) r

e}, |rl = VX Y+ (A.14)

~an m ] {exp(=|r|/c1) —exp(—

A.2. Stress function of bi-Helmholtz type for a screw dislocation
The stress function F fulfills the inhomogeneous bi-Helmholtz equation

A
(1 — &4 +y* AAF = I Inr, A= ub, (A.15)

and is the Green function of the following PDE of sixth order (bi-Helmholtz Laplace equation):
(1 = &4+ AA)AF = 45(x)5(p). (A.16)

Thus, we just calculate the Green function of Eq. (A.16). The Fourier transform of the Green function of
(A.16) reads

~ 4 Y| A c a
F(k)=— =-S5+ -2 A17
“ R(1+&k +9%) kK d-q (k2+;2 k2+;2> A7
1 2

Using Eq. (A.10) and the formula (Wladimirow, 1971)

a1 1
T ) H =5 (e +1nr), (A.18)
the solution for Fis given by
A 1
F:ﬁ{lnr—i—m[cﬂ{o(r/cl) —c%Ko(r/cz)]}. (A.19)

The constant factor yg in (A.18) is not relevant for the Green function due to the Laplacian in (A.16).
A.3. Stress function of bi-Helmholtz type for an edge dislocation

We use the relation f=0,G and obtain for the stress function G the following inhomogeneous
bi-Helmholtz equation
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A ub
) 4 _4 _ _ _HOx
(1 =& 4+9"44)G 1. Inr, A4 T (A.20)
The stress function G is the Green function of the PDE of eighth order (bi-Helmholtz bi-Laplace equation):
(1 = A+ y* AN AAG = 245(x)(y). (A.21)

Again we determine the stress function G as the Green function. From Eq. (A.21) we obtain for the Fourier
transform of the Green function:

~ 24 1 A+l 1 ct ct
G(k) = =24 |5 -2+ L2 : A22
®) k(1 + ek + p*k*) Kook dq-g\F+Lt B+t (A-22)
1 2
If we use Eq. (A.10) and the relation
R! 1
73] = e + 1) (A2
we finally find the solution for Green function G of Eq. (A.21):
4 [r 2, 2 2 4 4
G= =17 Inr+2(c;+¢;)Inr+ o2 [¢1Ko(r/c1) — 5Ko(r/c2)] (A.24)
1~
and for f:
A . 1 2(c2 +¢3 2
= 3, Sin qo{r(lnr +§> + (€ . 2 _ P (6K (r/c)) — K, (r/cz)}}. (A.25)

The factor r*yg in (A.23) is irrelevant for the Green function G since the bi-Laplacian in (A.21).
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