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Abstract

A theory of nonlocal elasticity of bi-Helmholtz type is studied. We employ Eringen�s model of nonlocal elasticity,
with bi-Helmholtz type kernels, to study dispersion relations, screw and edge dislocations. The nonlocal kernels are
derived analytically as Green functions of partial differential equations of fourth order. This continuum model of non-
local elasticity involves two material length scales which may be derived from atomistics. The new nonlocal kernels are
nonsingular in one-, two- and three-dimensions. Furthermore, the nonlocal elasticity of bi-Helmholtz type improves the
one of Helmholtz type by predicting a dispersion relationship with zero group velocity at the end of the first Brillouin
zone. New solutions for the stresses and strain energy of screw and edge dislocations are found.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical continuum theories like the linear theory of elasticity are intrinsically size independent. The
classical theory of elasticity predicts no dispersion and is valid only for small wave numbers. In addition,
the elastic strain, the stress and the elastic strain energy of defects (dislocations, disclinations) are singular
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at the defect line. Of course, such singularities are unphysical and they are the price which has to be paid if
one uses classical elasticity within the defect core region.

An improvement is obtained by using nonlocal elasticity instead of classical one (Kröner and Datta, 1966;
Eringen, 1983; Eringen, 2002). Theory of nonlocal elasticity includes the effect of long range interatomic
forces so that it can be used as a continuum model of the atomic lattice dynamics. In the theory of nonlocal
elasticity the stress at a reference point r depends on the elastic strain at every point r 0. From the mathemat-
ical point of view, this nonlocal interaction is given by a so-called nonlocal kernel. Solutions for the screw
and edge dislocations within nonlocal elasticity with Gaussian kernels have been given by Eringen (1977a,b).
A feature of these solutions is the elimination of the stress field and strain energy singularities at the dislo-
cation line. For a special class of kernels, which are the Green functions of the Helmholtz equation, nonlocal
elasticity was studied by Eringen (1983, 1992, 2002). These kernel are singular in two- and three-dimensions.
This nonlocal elasticity of Helmholtz type was used for the calculation of the stress field and strain energy of
a screw dislocation. Fortunately, the singularities of the stress disappeared. This stress field of a screw dis-
location coincides with the stress field calculated by Gutkin and Aifantis (1999a) within the gradient elastic-
ity framework. Furthermore, the strain energy is finite at the dislocation core. The stress field of an edge
dislocation was calculated by Lazar (2003) in the framework of nonlocal elasticity of Helmholtz type. His
result is in agreement with the stress obtained by Gutkin and Aifantis (1999a) within gradient elasticity.
On the other hand, the predicted dispersion curve is more realistic in nonlocal elasticity than that obtained
within the classical elasticity. However, the group velocity is badly off at the end of the Brillouin zone. These
solutions for the stress fields converge to the linear elasticity solutions in the far field.

Thus, the question arises, how can we improve the nonlocal elasticity of Helmholtz type? The kernels
should be the Green functions of partial differential equations of higher order which are modifications
of the Helmholtz equation. The physical motivation of this paper is twofold. First, the nonlocal kernels
should be nonsingular and, thus, they should have a finite maximum value. Second, the kernels of bi-
Helmholtz type should lead to dispersion relations for plane harmonic waves, which are coincident to those
obtained in lattice dynamics. Thus, the group velocity must be zero at the boundary of the Brillouin zone. The
physical reason is that the limit-velocity with k = p/a belongs to a standing wave (no wave propagation)–a
well-known result in lattice dynamics. Recently, Picu (2002) discussed the implications of modified Gaussian
kernels which depends on two intrinsic length scales to improves the behaviour of the group velocity.

In this paper, we address the theory of nonlocal elasticity of bi-Helmholtz type. In Section 2, the frame-
work of isotropic nonlocal elasticity is discussed. We specialize to nonlocal elasticity of bi-Helmholtz type
in Section 3. In Section 4, we give the nonlocal kernels of such a theory in one-, two- and three-dimensions.
In Section 5, we give the dispersion relations and compare them with results obtained in lattice theories.
The stresses and strain energies of screw and edge dislocations are calculated in Sections 6 and 7. Finally,
we conclude with a summary in Section 8. Some mathematical details are given in Appendix A.
2. Governing equations

The fundamental field equations of nonlocal elasticity have for an isotropic medium the following form
(Eringen, 1983, 1987, 2002):
@jtij þ qðfi � €uiÞ ¼ 0; ð2:1Þ

tijðrÞ ¼
Z
V
aðjr� r0jÞrijðr0Þdvðr0Þ; tij ¼ tji ð2:2Þ

rij ¼ kdijekk þ 2leij; ð2:3Þ

eij ¼
1

2
ð@jui þ @iujÞ; ð2:4Þ
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where k and l are the Lamé constants. q, fi and ui are, respectively, the mass density, body force density and
the displacement vector. In addition, eij is the classical elastic strain tensor, rij and tij are the classical and
nonlocal stress tensors, respectively. The a(jr � r 0j) is the nonlocal kernel. Boundary conditions involving
tractions are based on the stress tensor tij,
tijnj ¼ tiðnÞ; ð2:5Þ
where ti(n) are the boundary tractions. Eq. (2.2) may be rewritten in a nonlocal stress-strain relation accord-
ing to
tijðrÞ ¼
Z
V
fk0ðjr� r0jÞdijdkl þ 2l0ðjr� r0jÞdikdjlgeklðr0Þdvðr0Þ ð2:6Þ
with
k0ðjr� r0jÞ ¼ kaðjr� r0jÞ; l0ðjr� r0jÞ ¼ laðjr� r0jÞ; ð2:7Þ

which are the Lamé coefficients of the nonlocal medium. Thus, the nonlocal kernel is a measure of the effect
of the strain at r 0 on the stress at r.

The nonlocal kernel a(jr � r 0j) has the following properties:

(i) From Eq. (2.2) it is clear that the nonlocal kernel has the dimension of (length)�3. Therefore, it must
depend on characteristic length scales.

(ii) It must reach a maximum at r = r 0 and has to decay to zero at large distances.
(iii) It has to satisfy the normalization condition:
Z

V
aðjr� r0jÞdvðr0Þ ¼ 1; ð2:8Þ
which is the normalization condition of the nonlocal kernel.
(iv) It must be a continuous function of position (in the classical limit it becomes the Dirac delta func-

tion).These rather general conditions can be fulfilled by many functions. An additional property of
the nonlocal kernel may be:

(v) It is a Green function of a linear differential operator L:
Laðjr� r0jÞ ¼ dðr� r0Þ. ð2:9Þ

Lmay be a differential operator with constant or variable coefficients of any order. Applying the differential
operator L to Eq. (2.2), we obtain the differential equation for tij:
Ltij ¼ rij; ð2:10Þ

where the inhomogeneous part is given by the stress tensor rij. If L is a differential operator with constant
coefficients, then (2.1) gives
@jrij þ Lðqfi � q€uiÞ ¼ 0. ð2:11Þ
3. Nonlocal elasticity of bi-Helmholtz type

As elliptic differential operator we use an operator of fourth order which has already been proposed by
Eringen (1992, 2002). This linear differential operator of fourth order of bi-Helmholtz type with constant
coefficients is given by
L ¼ 1� e2Dþ c4DD; ð3:1Þ
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where e and c are nonnegative parameters of nonlocality. These two parameters have the dimension of
lengths and, thus, they may be written in terms of a characteristic length scale, a, (i.e., lattice constant)
e ¼ e0a; e0 P 0; c ¼ c0a; c0 P 0. ð3:2Þ

Nonlocal elasticity of bi-Helmholtz type has two limits. They are given in two steps. The limit from

bi-Helmholtz type to Helmholtz type is given by c ! 0. The second limit is obtained by e! 0, in addition
to the first one. The second limit is the limit from nonlocal elasticity of Helmholtz type to classical theory of
elasticity.

Using (3.1), Eq. (2.9) reads
ð1� e2Dþ c4DDÞaðjr� r0jÞ ¼ dðr� r0Þ ð3:3Þ

and (2.10) gives
ð1� e2Dþ c4DDÞtij ¼ rij. ð3:4Þ

In addition, Eq. (2.11) is given by
@jrij þ ð1� e2Dþ c4DDÞðqfi � q€uiÞ ¼ 0. ð3:5Þ

Using Eqs. (2.3) and (2.4), we obtain from (3.5) the following partial differential equation for the

displacement vector:
lDui þ ðkþ lÞ@i@juj þ ð1� e2Dþ c4DDÞðqfi � q€uiÞ ¼ 0. ð3:6Þ

Because Eq. (3.6) involves mixed space-time derivatives up to fourth order space derivatives, it is an

improved linear version of the �good� Boussinesq equation (see, e.g., Maugin, 1999).
The differential operator is called bi-Helmholtz operator because it can be factorized into two Helmholtz

operators according to
L ¼ 1� e2Dþ c4DD ¼ ð1� c21DÞð1� c22DÞ ð3:7Þ

with the abbreviations
c21 ¼
e2

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

c4

e4

r !
; ð3:8Þ

c22 ¼
e2

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

c4

e4

r !
; ð3:9Þ
and the conditions
e2 ¼ c21 þ c22; ð3:10Þ
c4 ¼ c21c

2
2. ð3:11Þ
We note that such a factorization was not used by Eringen (2002). Due to (3.11), the condition of the
discriminant in Eqs. (3.8) and (3.9) must be nonnegative. Thus,
0 6 1� 4
c4

e4

� �
. ð3:12Þ
Then, we have the two possibilities:

• e4 > 4c4, c15c2 are real, ) e >
ffiffiffi
2

p
c.

• e4 = 4c4, c1 = c2 are real, ) e ¼
ffiffiffi
2

p
c.
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Since c22 is positive we have
0 6 4c4 6 e4. ð3:13Þ

Thus, c21 and c22 have to be real and positive. The limit from nonlocal elasticity of bi-Helmholtz type to

nonlocal elasticity of Helmholtz type is obtained from Eqs. (3.8) and (3.9) by c21 ! e2 and c22 ! 0.
4. Nonlocal kernels of bi-Helmholtz type

We give the solutions of Eq. (3.3) for infinitely extended solids. We note that Eringen (2002) gave only
the expression (A.4) for the kernel of Eq. (3.3) in the k-space. The explicit calculations are given in Appen-
dix A.1. The nonlocal kernels which are the Green function of the bi-Helmholtz equation are given by (see
Eqs. (A.12)–(A.14)):

(a) One-dimension (jrj ¼
ffiffiffiffi
x2

p
):
aðjrjÞ ¼ 1

2

1

c21 � c22
fc1 expð�jrj=c1Þ � c2 expð�jrj=c2Þg; að0Þ ¼ 1

2

1

c1 þ c2
. ð4:1Þ
(b) Two-dimensions (jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
):
aðjrjÞ ¼ 1

2p
1

c21 � c22
fK0ðjrj=c1Þ � K0ðjrj=c2Þg; að0Þ ¼ 1

2p
1

c21 � c22
ln
c1
c2
; ð4:2Þ
where Kn is the modified Bessel function of the second kind (or McDonald function) of order n.

(c) Three-dimensions (jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
):
aðjrjÞ ¼ 1

4p
1

c21 � c22

1

jrj fexpð�jrj=c1Þ � expð�jrj=c2Þg; að0Þ ¼ 1

4p
1

c1c2ðc1 þ c2Þ
ð4:3Þ
and for the limit c2 ! c1 = c we obtain

(a) One-dimension:
aðjrjÞ ¼ 1

2

1

2c2
ðcþ jrjÞ expð�jrj=cÞ; að0Þ ¼ 1

4c
. ð4:4Þ
(b) Two-dimensions:
aðjrjÞ ¼ 1

2p
jrj
2c3

K1ðjrj=cÞ; að0Þ ¼ 1

4pc2
. ð4:5Þ
(c) Three-dimensions:
aðjrjÞ ¼ 1

4p
1

2c3
expð�jrj=cÞ; að0Þ ¼ 1

8pc3
. ð4:6Þ
The kernels (4.1)–(4.6) fulfill all conditions (i)–(v). It is important to note that all kernels (4.1)–(4.6) are
nonsingular in contrast to the two- and three-dimensional nonlocal kernels of Helmholtz type which are
singular at r = 0. In the limits c2 ! 0 and c1 ! e, the nonlocal kernels (4.1)–(4.3) reduce to the nonlocal
kernels of Helmholtz type given by Eringen (1983, 1987). The kernels (4.4)–(4.6) are plotted in Fig. 1.



0 2 4 6 8

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0.2

0.4

0.6

0.8

1

0 2 4 6 8

0.2

0.4

0.6

0.8

1

c

b

a

Fig. 1. Nonlocal kernels of bi-Helmholtz type with c1 = c2 = c are plotted vs r/c: (a) aÆ[4c], (b) aÆ[4pc2], (c) aÆ[8pc3].
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5. Matching the dispersion curve with lattice models

We consider an elastic body of infinite extent with no discontinuity or body forces. Using the Helmholtz
decomposition of the displacement field uj into the Lamé potentials (scalar potential /, vector potential wj)
according to
uj ¼ @j/þ ejkl@kwl with @jwj ¼ 0. ð5:1Þ
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Eq. (3.6) with f = 0 reduces to
v21D/� ð1� e2Dþ c4DDÞ€/ ¼ 0; ð5:2Þ
v22Dw� ð1� e2Dþ c4DDÞ€w ¼ 0; ð5:3Þ
where
v21 ¼
kþ 2l

q
; v22 ¼

l
q
. ð5:4Þ
Here v1 and v2 denote the longitudinal and the transversal velocities of sound, respectively. For plane
harmonic waves, Eqs. (5.2) and (5.3) lead to the following dispersion relations for the plane longitudinal
and transverse waves
x2
j ðkÞ=x2

0j ¼ ~aðkÞ ¼ 1

1þ e2k2 þ c4k4
; j ¼ 1; 2 ð5:5Þ
with
x2
0j ¼ k2v2j . ð5:6Þ
The phase velocity is given by
vPj ðkÞ ¼ xjðkÞ=k ¼ vj
ffiffiffiffiffiffiffiffiffi
~aðkÞ

p
ð5:7Þ
and the group velocity reads
vGj ðkÞ ¼
dxj

dk
¼ vj

1� c4k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2k2 þ c4k43

p . ð5:8Þ
The natural conditions for dispersion relations are
vGj ð0Þ ¼
dxj

dk

����
k¼0

¼ vj; vGj ðp=aÞ ¼
dxj

dk

����
k¼p

a

¼ 0. ð5:9Þ
The first condition means that the group velocity is vj at the beginning of the Brillouin zone and the sec-
ond condition of Eq. (5.9) means that the group velocity vanishes at the end of the Brillouin zone. From the
second condition of (5.9), we obtain the value for c0 (see also Eringen, 2002):
c0 ¼
1

p
’ 0.318. ð5:10Þ
The dispersion relation (5.5) may be compared with those known from lattice dynamics to obtain the
value of the coefficient e0.

5.1. Nearest neighbour interactions

In the Born–von Kármán model of lattice dynamics, which is analogous to the case of a chain with only
nearest–neighbour interactions, the dispersion relation reads (see, e.g., Brillouin, 1953)
x2
j ðkÞ=x2

0j ¼ ð2a=kÞ2sin2ðka=2Þ. ð5:11Þ
The matching for (5.11) and (5.5) with (5.10) is perfect at the end of the Brillouin zone (ka = p) if (see Fig. 2)
e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 8

4p2

r
’ 0.218. ð5:12Þ



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fig. 2. Dispersion curves for nonlocal elasticity of bi-Helmholtz type with c0 = 1/p and e0 = 0.218 (full line) and the Born–von
Kármán model (dashed curve) of lattice dynamics vs reduced wave number ka/p.
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The dispersion relation (5.5) with the values (5.10) and (5.12) coincides with Kunin�s result for a Debye
quasicontinuum (Kunin, 1983; Eringen, 2002). Unfortunately, it violates the condition (3.12). In fact:
1� 4
c0
e0

� �
< 0. ð5:13Þ
Thus, c1 and c2 are complex,
c1 ’ ð0.250þ 0.197iÞa; ð5:14Þ
c2 ’ ð0.250� 0.197iÞa ð5:15Þ
with i ¼
ffiffiffiffiffiffiffi
�1

p
. But, this is not acceptable from the physical point of view.

If we use the case e2 = 2c2, the dispersion relation reads
x2
j=x

2
0j ¼

1

1þ 2c2k2 þ c4k4
. ð5:16Þ
From the matching at ka = p, we obtain for c0:
c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� 4

p

2p
’ 0.240; ð5:17Þ
or for c1 and c2:
c1 ¼ c2 ’ 0.240a. ð5:18Þ

But the price one has to pay is that the group velocity is off at the end of the Brillouin zone. In fact, the

group velocity is close to zero at the Brillouin zone boundary. However, it is a better approximation than
the dispersion curve of nonlocal elasticity of Helmholtz type (see Fig. 3)
x2
j=x

2
0j ¼

1

1þ e2k2
; with e0 ¼ 0.39; ð5:19Þ
where the group velocity is badly off at the end of the Brillouin zone.
Therefore, the best physical result for the match of the Born–von Kármán model is given by nonlocal

elasticity of Helmholtz type or bi-Helmholtz type with one parameter of nonlocality. However, in both
cases the group velocity is badly off at the end of the Brillouin zone.
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Fig. 3. Dispersion curves for nonlocal elasticity of bi-Helmholtz type with c0 = 0.24 (full line), the nonlocal model of Helmholtz type
with e0 = 0.39 (long dashed curve) and the Born–von Kármán model (dashed curve) vs reduced wave number ka/p.
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5.2. Next nearest neighbour interactions

Now, we consider a model of lattice dynamics with next-nearest neighbour interactions. Thus, we ac-
count for the interactions with first and second neighbours like in a homogeneous chain. The dispersion
relation of such a model is given by Jaunzemis (1967).
Fig. 4.
interac
x2
j ðkÞ=x2

0j ¼ ð2a=kÞ2ð1þ dÞsin2ðka=2Þ ð5:20Þ
with
d ¼ b
a
; ð5:21Þ
where a and b are the force constants (stiffness) of first and second neighbour interactions. Thus, d is the
ratio of force constants for second and first neighbour interactions.

The matching for (5.20) and (5.5) with (5.10) is perfect at the end of the Brillouin zone (ka = p) if (see
Fig. 4)
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Dispersion curves for nonlocal elasticity of bi-Helmholtz type with c0 = 1/p and the lattice model with next-nearest neighbour
tions vs reduced wave number ka/p for the value of d = �0.383.
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e0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 8ð1þ dÞ
4p2ð1þ dÞ

s
. ð5:22Þ
Thus, e0 is given in terms of the ratio d. If we use (5.22) and solve the inequation (3.12), we obtain the
bounds for d:
�1 < d 6
p2

16
� 1 ’ �0.383 ð5:23Þ
and for the force constants
�a < b 6 �0.383a. ð5:24Þ
Thus, this corresponds to a competition between the interaction of second and first neighbours. The first
force constant is stronger than the second one; otherwise, it would be an unphysical result. The sign and the
bounds of d are similar to those given by Maugin (1999, p. 73).

If we give up the second condition of (5.9) and match the dispersion relation (5.16) with (5.20) at ka = p,
we obtain
c20 ¼ � 1

p2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4p2ð1þ dÞ

s
. ð5:25Þ
Doing the same for (5.19) and (5.20), one gets
e20 ¼
p2 � 4ð1þ dÞ
4p2ð1þ dÞ . ð5:26Þ
From the conditions c20 > 0 and e20 > 0 we obtain in both cases the following bounds for d:
�1 < d 6
p2

4
� 1 ’ 1.467 ð5:27Þ
and for the force constants
�a < b 6 1.467a. ð5:28Þ

Thus, b > a is possible, what is a strange and unphysical result.

We conclude that the best match for the lattice model with next-nearest neighbour interactions is ob-
tained by the nonlocal elasticity of bi-Helmholtz type with two different coefficients of nonlocality. It pre-
dicts the physical result of a vanishing group velocity at the boundary of the Brillouin zone. No anomalous
dispersion appears. Nonlocal elasticity of Helmholtz type or bi-Helmholtz type with only one parameter of
nonlocality leads to unphysical results.
6. Screw dislocation

Consider now a static screw dislocation in the nonlocal theory of bi-Helmholtz type. For fi = 0 the static
equation of equilibrium (2.1) is satisfied by introducing the stress function F according to
tzu ¼ @rF . ð6:1Þ

For stress rzu of a straight screw dislocation we have
rzu ¼ lbz
2p

1

r
¼ lbz

2p
@r ln r. ð6:2Þ
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Using (3.4), this gives an inhomogeneous bi-Helmholtz equation for the stress function:
Fig. 5.
repres
ð1� e2Dþ c4DDÞF ¼ lbz
2p

ln r. ð6:3Þ
An appropriate solution of this equation is given by (see Appendix A.2, Eq. (A.19)):
F ¼ lbz
2p

ln r þ 1

c21 � c22
½c21K0ðr=c1Þ � c22K0ðr=c2Þ�

� �
. ð6:4Þ
Hence, the stress field tzu is given by
tzu ¼ lbz
2p

1

r
1� 1

c21 � c22
½c1rK1ðr=c1Þ � c2rK1ðr=c2Þ�

� �
. ð6:5Þ
In the limits c2 ! 0 and c1 ! e, we recover Eringen�s result calculated in nonlocal elasticity of Helmholtz
type (Eringen, 1983; Eringen, 2002). For c2 = c1 = c it reads
tzu ¼ lbz
2p

1

r
1� r

c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ

� �
. ð6:6Þ
The stress is zero at r = 0 and has an extremum value near the dislocation line. The extremum value
depends strongly on c2 and c1. For c1 = c2 = c, we have: tzu ’ 0.249lbz/[2pc] = 0.352lbz/[2pe] at
r ’ 2.324c = 1.643e. Eq. (6.6) is plotted over r/e in Fig. 5. The stress in nonlocal elasticity of Helmholtz type
has a maximum: tzu ’ 0.399 lbz/[2pe] at r ’ 1.114e. Only in the region r/e < 3 is a difference between the
stress calculated in nonlocal elasticity of Helmholtz or bi-Helmholtz type (see Fig. 5).

The stored strain energy is given by
R ¼ 1

2

Z
V
tijeij dv; ð6:7Þ
where V is the volume of the solid body. Integrating over the region r0 6 r 6 R, 0 6 u 6 2p, 0 6 z 6 l and
using ezu = bz/[4pr], one obtains the strain energy of a screw dislocation per length l as follows:
Rs

l
¼ 2p

Z R

r0

tzuezurdr ¼
lb2z
4p

ln r þ 1

c21 � c22
½c21K0ðr=c1Þ � c22K0ðr=c2Þ�

� �����R
r0

ð6:8Þ
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Stress tzu of a screw dislocation is given in units of lbz/[2pe]. The full curve, small dashed curve and dashed curve, respectively,
ent the stress fields in nonlocal elasticity of bi-Helmholtz type, nonlocal elasticity of Helmholtz type and classical elasticity.
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and thus
Rs

l
¼ lb2z

4p
ln

R
r0

þ 1

c21 � c22
fc21½K0ðR=c1Þ � K0ðr0=c1Þ� � c22½K0ðR=c2Þ � K0ðr0=c2Þ�g

� �
. ð6:9Þ
With the limiting expression
K0ðr=cÞjr!0 ! � cE þ ln
r
2c

h i
; ð6:10Þ
where cE is the Euler constant, we find for a solid body of radius R:
Rs

l
¼ lb2z

4p
cE þ ln

R
2
þ 1

c21 � c22
fc21½K0ðR=c1Þ � ln c1� � c22½K0ðR=c2Þ � ln c2�g

� �
. ð6:11Þ
Unlike the classical result, Rs has no singularity as r0 ! 0. Using
Knðr=cÞjr!1 ! 0; ð6:12Þ
the final result reads
Rs

l
¼ lb2z

4p
cE þ ln

R
2
� 1

c21 � c22
fc21 ln c1 � c22 ln c2g

� �
. ð6:13Þ
The strain energy depends on c1 and c2. In the limit c2 ! 0, we recover the result of nonlocal elasticity of
Helmholtz type (see, e.g., Eringen, 2002). The nonlocal result of Helmholtz type coincides with Gutkin
and Aifantis� gradient elasticity result (Gutkin and Aifantis, 1999b) and, in addition, they agree with
Lazar�s gauge theoretical result (Lazar, 2002a; Lazar, 2002b), which explicitly contains the dislocation core
energy. Thus, we conclude that the nonlocal strain energy is the total strain energy containing the core
energy.
7. Edge dislocation

Now we consider an edge dislocation. In the case of a straight edge dislocation, the static equation of
equilibrium (2.1) is fulfilled by using the stress function f according to
trr ¼
1

r
@rf þ 1

r2
@2
uuf ; tuu ¼ @2

rrf ; tru ¼ �@r
1

r
@uf

� �
; tzz ¼ mðtrr þ tuuÞ. ð7:1Þ
The appropriate Airy stress function for a straight edge dislocation in classical elasticity is given by
v ¼ � lbx
4pð1� mÞ @yðr2 ln rÞ; ð7:2Þ
where m is the Poisson ratio. The usual stress tensor is calculated by
rrr ¼
1

r
@rvþ

1

r2
@2
uuv ¼ � lbx

2pð1� mÞ
sinu
r

; ð7:3Þ

ruu ¼ @2
rrv ¼ � lbx

2pð1� mÞ
sinu
r

; ð7:4Þ

rru ¼ �@r
1

r
@uv

� �
¼ lbx

2pð1� mÞ
cosu
r

. ð7:5Þ
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If we use (3.4), we obtain an inhomogeneous bi-Helmholtz equation for the stress function:
ð1� e2Dþ c4DDÞf ¼ � lbx
4pð1� mÞ @yðr2 ln rÞ. ð7:6Þ
The solution of this equation reads (see Appendix A.3, Eq. (A.25):
f ¼ � lbx
2pð1� mÞ sinu r ln r þ 1

2

� �
þ 2ðc21 þ c22Þ

r
� 2

c21 � c22
½c31K1ðr=c1Þ � c32K1ðr=c2Þ�

� �
. ð7:7Þ
We find for the stress of a straight edge dislocation in cylindrical coordinates
trr ¼� lbx
2pð1� mÞ

sinu
r

1�4ðc21þc22Þ
r2

þ 2

c21� c22
½c21K2ðr=c1Þ� c22K2ðr=c2Þ�

� �
; ð7:8Þ

tru ¼
lbx

2pð1� mÞ
cosu
r

1�4ðc21þ c22Þ
r2

þ 2

c21� c22
½c21K2ðr=c1Þ� c22K2ðr=c2Þ�

� �
; ð7:9Þ

tuu ¼� lbx
2pð1�mÞ

sinu
r

1þ4ðc21þ c22Þ
r2

� 2

c21�c22
½c21K2ðr=c1Þ� c22K2ðr=c2Þþ c1rK1ðr=c1Þ� c2rK1ðr=c2Þ�

� �
; ð7:10Þ

tzz ¼� lbxm
pð1� mÞ

sinu
r

1� 1

c21� c22
½c1rK1ðr=c1Þ� c2rK1ðr=c2Þ�

� �
. ð7:11Þ
In the limits c2 ! 0 and c1 ! e = 1/j, we recover from Eqs. (7.8)–(7.11) the result of nonlocal elasticity
of Helmholtz type obtained by Lazar (2003). In the limit c2 ! c2 = c, we obtain
trr ¼ � lbx
2pð1� mÞ

sinu
r

1� 8c2

r2
þ 4K2ðr=cÞ þ

r
c
K1ðr=cÞ

� �
; ð7:12Þ

tru ¼ lbx
2pð1� mÞ

cosu
r

1� 8c2

r2
þ 4K2ðr=cÞ þ

r
c
K1ðr=cÞ

� �
; ð7:13Þ

tuu ¼ � lbx
2pð1� mÞ

sinu
r

1þ 8c2

r2
� 4K2ðr=cÞ � 3

r
c
K1ðr=cÞ �

r2

c2
K0ðr=cÞ

� �
; ð7:14Þ

tzz ¼ � lbxm
pð1� mÞ

sinu
r

1� r
c
K1ðr=cÞ �

r2

2c2
K0ðr=cÞ

� �
. ð7:15Þ
The stresses are zero at r = 0 and have extremum values near the dislocation line. The extremum values
depend on c2 and c1. For c1 = c2 = c, we have: jtrrj ’ 0.159l bx/[2p(1 � m)c] = 0.225lbx/[2p(1 � m)e] at
r ’ 3.102, c = 2.193e and u = p/2, 3p/2, jtruj ’ 0.159lbx/[2p(1 � m)c] = 0.225l bx/[2p(1 � m)e] at r ’
3.102c = 2.193 e and u = 0, p, jtuuj ’ 0.345l bx/[2p(1 � m)c] = 0.489lbx/[2p(1 � m)e] at r ’ 2.10c = 1.485e,
and u = p/2, 3p/2 and jtzzj ’ 0.249lbx/[p(1 � m)c] = 0.352l bx/[p(1 � m)e] at r ’ 2.324c = 1.643e and u =
p/2, 3p/2. The stresses are plotted over r/e in Fig. 6. It can be seen that the stresses calculated in nonlocal
elasticity of bi-Helmholtz type are slightly changed in comparison to the corresponding stresses obtained in
nonlocal elasticity of Helmholtz type which were calculated by Lazar (2003). In fact, in nonlocal elasticity
of Helmholtz type the extremum values are: jtrrj ’ 0.260lbx/[2p(1 � m)e] at r ’ 1.494e and u = p/2, 3p/2,
jtruj ’ 0.260l bx/[2p(1 � m)e] at r ’ 1.494e and u = 0, p, jtuuj ’ 0.547l bx/[2p(1 � m)e] at r ’ 0.996e, and
u = p/2, 3p/2 and jtzzj ’ 0.399l bx/[p(1 � m)e] at r ’ 1.114e and u = p/2, 3p/2.

The stored strain energy (6.7) for an edge dislocation is given by
Re ¼
1

2

Z
V
ðtrrerr þ tuueuu þ 2trueruÞdv. ð7:16Þ
Using (7.8)–(7.10) and err, euu and eru obtained from (7.3)–(7.5) with the inverse of the Hooke law (2.3)
and integrating over the region r0 6 r 6 R, 0 6 u 6 2p, 0 6 z 6 l, we find the strain energy per length l as
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Fig. 6. Stress of an edge dislocation: (a) trr and (b) tuu are given in units of lbx /[2p(1 � m)e] for u = 3p/2, (c) tzz is given in units of
lbxm/[p(1 � m)e] for u = 3p/2. The full curves, small dashed curves and dashed curves, respectively, represent the stress fields in
nonlocal elasticity of bi-Helmholtz type, nonlocal elasticity of Helmholtz type and classical elasticity.
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Re

l
¼ lb2x

4pð1� mÞ2
ð1� mÞ ln r þ 1

c21 � c22
½c21K0ðr=c1Þ � c22K0ðr=c2Þ�

� ��
þ c21 þ c22

r2
� 1

2ðc21 � c22Þ
½c21K2ðr=c1Þ � c22K2ðr=c2Þ�

�����R
r0

ð7:17Þ
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and thus
Re

l
¼ lb2x

4pð1� mÞ2
ð1� mÞ ln

R
r0

þ 1

c21 � c22
c21½K0ðR=c1Þ � K0ðr0=c1Þ� � c22½K0ðR=c2Þ � K0ðr0=c2Þ�
	 
� ��

þ c21 þ c22
R2

� c21 þ c22
r20

� 1

2ðc21 � c22Þ
fc21½K2ðR=c1Þ � K2ðr0=c1Þ� � c22½K2ðR=c2Þ � K2ðr0=c2Þ�g

�
. ð7:18Þ
By using the relation (6.10) as well as the limiting expression
K2ðr=cÞjr!0 ! � 1

2
þ 2c2

r2
; ð7:19Þ
we find the elastic energy for a solid with radius R:
Re

l
¼ lb2x

4pð1� mÞ2
ð1� mÞ cE þ ln

R
2
þ 1

c21 � c22
fc21½K0ðR=c1Þ � ln c1� � c22½K0ðR=c2Þ � ln c2�g

� ��

� 1

4
þ c21 þ c22

R2
� 1

2ðc21 � c22Þ
fc21K2ðR=c1Þ � c22K2ðR=c2Þg

�
. ð7:20Þ
With the asymptotic formula (6.12), we finally obtain
Re

l
¼ lb2x

4pð1� mÞ cE �
1

4ð1� mÞ þ ln
R
2
� 1

c21 � c22
fc21 ln c1 � c22 ln c2g

� �
. ð7:21Þ
Again, the strain energy depends on c1 and c2. It can be seen that the energy (7.21) is similar to the result for
the energy of a screw dislocation. Only the pre-factor and the second piece of (7.21) are different. In the
limit c2 ! 0 (nonlocal elasticity of Helmholtz type) we recover the result obtained by Gutkin and Aifantis
calculated in the theory of gradient elasticity (Eq. (27) in Gutkin and Aifantis (1999b)). Gutkin and Aifantis
(1999b) used in gradient elasticity the strain energy W ¼ 1

2

R
V rij�

ðgrÞ
ij dv where �ðgrÞij is the elastic strain calcu-

lated in gradient elasticity. Gutkin and Aifantis (1999b) also calculated the strain energy of a screw and an

edge dislocation with another expression for the (elastic) strain energy W ¼ � 1
2

R
V r

ðgrÞ
ij bP;ðclÞ

ij dv where rðgrÞ
ij

denotes the nonsingular stress in gradient elasticity and bP;ðclÞ
ij is the classical plastic distortion tensor. Be-

cause the elastic strain energy should be given only in terms of elastic fields, the plastic distortion should
not enter the elastic strain energy. The price they had to pay is that for the edge dislocation they obtained
a different result which does not agree with the elastic strain energy calculated in nonlocal elasticity of
Helmholtz type.
8. Conclusions

In this paper, nonlocal elasticity of bi-Helmholtz type is studied. New nonlocal kernels in one-, two-, and
three-dimensions are calculated. These kernels contain two parameters of nonlocality. All new nonlocal
kernels are nonsingular. Dispersion relations are obtained for plane waves in nonlocal elasticity of bi-
Helmholtz type. By equating the frequency at the end of the Brillouin zone, one parameter of nonlocality
is determined. The second one is determined by the condition that the group velocity is zero at the bound-
ary of the Brillouin zone. We compared the dispersion curves with results known from lattice dynamics
with nearest neighbour interactions and with next nearest neighbour interactions. The best physical result
for the dispersion relation of nonlocal elasticity of bi-Helmholtz type with two different parameters is
obtained from lattice theory with next nearest neighbour interactions. In addition, the stresses and strain
energy of a straight screw dislocation as well as an edge dislocation are calculated. They do not have
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singularities. The corresponding static theory of gradient elasticity of bi-Helmholtz type with double and
triple stresses will be given in a further publication (Lazar et al., submitted for publication).
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Appendix A

We use the following notation for the Fourier transform (Guelfand and Chilov, 1962)
ef ðkÞ � FðnÞ½f ðrÞ� ¼
Z þ1

�1
f ðrÞeþik�r dk; ðA:1Þ

f ðrÞ � F�1
ðnÞ½ef ðkÞ� ¼ 1

ð2pÞn
Z þ1

�1
ef ðkÞe�ik�r dr. ðA:2Þ
A.1. Nonlocal kernels of the bi-Helmholtz equation

First we want to find the nonlocal kernels by using the Fourier transform. From the bi-Helmholtz
equation
ð1� e2Dþ c4DDÞaðjrjÞ ¼ dðrÞ; ðA:3Þ

the Fourier transformed nonlocal kernel, which is the Green function, is given by
~aðkÞ ¼ 1

1þ e2k2 þ c4k4
. ðA:4Þ
The calculation of F�1
ðnÞ½~aðkÞ� is depending on the zero points of the polynomial in k2:
k4 þ e2

c4
k2 þ 1

c4
. ðA:5Þ
The zero points are given by
k21=2 ¼ � e2

2c4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

c4

e4

r !
. ðA:6Þ
Therefore, a necessary condition for the calculation of the inverse Fourier transform is that the discrim-
inant has to be nonnegative. Therefore,
0 6 1� 4
c4

e4

� �
; ðA:7Þ
which is equivalent with the condition (3.12). Now we factorize Eq. (A.4) and use the abbreviations (3.8)
and (3.9) according to
~aðkÞ ¼ 1

ð1þ c21k
2Þð1þ c22k

2Þ
¼ 1

c21 � c22

1

k2 þ 1
c2
1

� 1

k2 þ 1
c2
2

0@ 1A. ðA:8Þ
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Using the formulas (Guelfand and Chilov, 1962; Wladimirow, 1971)
F�1
ð1Þ

1

k2 þ 1
c2

" #
¼ c

2
expð�jxj=cÞ ðA:9Þ

F�1
ð2Þ

1

k2 þ 1
c2

" #
¼ 1

2p
K0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=cÞ ðA:10Þ

F�1
ð3Þ

1

k2 þ 1
c2

" #
¼ 1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
=cÞ ðA:11Þ
we obtain the inverse Fourier transformed nonlocal kernels
1D :aðjrjÞ ¼ 1

2

1

c21 � c22
fc1 expð�jrj=c1Þ � c2 expð�jrj=c2Þg; jrj ¼

ffiffiffiffi
x2

p
ðA:12Þ

2D :aðjrjÞ ¼ 1

2p
1

c21 � c22
fK0ðjrj=c1Þ � K0ðjrj=c2Þg; jrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ðA:13Þ

3D :aðjrjÞ ¼ 1

4p
1

c21 � c22

1

jrj fexpð�jrj=c1Þ � expð�jrj=c2Þg; jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. ðA:14Þ
A.2. Stress function of bi-Helmholtz type for a screw dislocation

The stress function F fulfills the inhomogeneous bi-Helmholtz equation
ð1� e2Dþ c4DDÞF ¼ A
2p

ln r; A ¼ lbz ðA:15Þ
and is the Green function of the following PDE of sixth order (bi-Helmholtz Laplace equation):
ð1� e2Dþ c4DDÞDF ¼ AdðxÞdðyÞ. ðA:16Þ

Thus, we just calculate the Green function of Eq. (A.16). The Fourier transform of the Green function of
(A.16) reads
eF ðkÞ ¼ � A

k2ð1þ e2k2 þ c4k4Þ
¼ � A

k2
þ A
c21 � c22

c21
k2 þ 1

c2
1

� c22
k2 þ 1

c2
2

0@ 1A. ðA:17Þ
Using Eq. (A.10) and the formula (Wladimirow, 1971)
F�1
ð2Þ

1

k2

� �
¼ � 1

2p
ðcE þ ln rÞ; ðA:18Þ
the solution for F is given by
F ¼ A
2p

ln r þ 1

c21 � c22
½c21K0ðr=c1Þ � c22K0ðr=c2Þ�

� �
. ðA:19Þ
The constant factor cE in (A.18) is not relevant for the Green function due to the Laplacian in (A.16).

A.3. Stress function of bi-Helmholtz type for an edge dislocation

We use the relation f = oyG and obtain for the stress function G the following inhomogeneous
bi-Helmholtz equation
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ð1� e2Dþ c4DDÞG ¼ A
4p

r2 ln r; A ¼ � lbx
1� m

. ðA:20Þ
The stress function G is the Green function of the PDE of eighth order (bi-Helmholtz bi-Laplace equation):
ð1� e2Dþ c4DDÞDDG ¼ 2AdðxÞdðyÞ. ðA:21Þ

Again we determine the stress function G as the Green function. From Eq. (A.21) we obtain for the Fourier
transform of the Green function:
eGðkÞ ¼ 2A

k4ð1þ e2k2 þ c4k4Þ
¼ 2A

1

k4
� c21 þ c22

k2
þ 1

c21 � c22

c41
k2 þ 1

c2
1

� c42
k2 þ 1

c2
2

0@ 1A24 35. ðA:22Þ
If we use Eq. (A.10) and the relation
F�1
ð2Þ

1

k4

� �
¼ 1

8p
r2ðcE þ ln rÞ; ðA:23Þ
we finally find the solution for Green function G of Eq. (A.21):
G ¼ A
2p

r2

2
ln r þ 2ðc21 þ c22Þ ln r þ

2

c21 � c22
½c41K0ðr=c1Þ � c42K0ðr=c2Þ�

� �
ðA:24Þ
and for f:
f ¼ A
2p

sinu r ln r þ 1

2

� �
þ 2ðc21 þ c22Þ

r
� 2

c21 � c22
½c31K1ðr=c1Þ � c32K1ðr=c2Þ�

� �
. ðA:25Þ
The factor r2cE in (A.23) is irrelevant for the Green function G since the bi-Laplacian in (A.21).
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